Peak-Muscle.com  

Welcome to the Peak-Muscle.com forums.

You are currently viewing our boards as a guest which gives you limited access to view most discussions and access our other features. Come join us in on one of the best online fitness communities. We have 16,000 members that are likeminded towards a fitness, bodybuilding lifestyle. Registration is free and only takes but a few minutes. By joining our free community you will have access to communicate privately with other members (PM), respond to polls, upload content and access many other special features. You will be able to create threads to discuss and or create a fitness regimen. Or just bounce ideas off of some very knowledgeable members. So don't miss out. Registration is fast, simple and absolutely free so please, join our community today!

Register FAQ Members List Calendar Arcade Mark Forums Read
Go Back   Peak-Muscle.com > Anabolic Steroid Discussion > Peptides and SARMS
User Name
Password

Reply
 
Thread Tools Display Modes
Old 06-05-2018, 12:15 PM   #1
liftsiron
Administrator
 
liftsiron's Avatar
 

Join Date: Nov 2003
Location: Cimmeria
Posts: 18,386
liftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant future
The AGE-breaker ALT-711

NCBI Logo
Skip to main content
Skip to navigation
Resources
How To
About NCBI Accesskeys

Sign in to NCBI
PubMed
US National Library of Medicine National Institutes of Health



Diabetes. 2012 Jun;61(6):1562-72. doi: 10.2337/db11-0750. Epub 2012 Mar 13.
The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes.
Freidja ML1, Tarhouni K, Toutain B, Fassot C, Loufrani L, Henrion D.
Author information
Abstract

Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases, but this is impaired in diabetes. We hypothesized that breaking advanced glycation end product (AGE) cross-links could improve remodeling in mesenteric resistance arteries in Zucker diabetic fatty (ZDF) rats compared with lean Zucker (LZ) rats. Arteries, exposed to high (HF) or normal (NF) blood flow after alternate arterial ligation in vivo, were collected after 2 weeks. In LZ rats, HF artery diameter was larger than for NF vessels, but this was not the case in ZDF rats. Endothelium-mediated dilation in ZDF rats, which was lower than in LZ rats, was further decreased in HF arteries. Treatment of rats with the AGE-breaker 4,5-dimethyl-3-phenacylthiazolium chloride (ALT-711) (3 mg/kg/day; 3 weeks) reversed diabetes-induced impairment of HF-dependent remodeling. ALT-711 also improved endothelium nitric oxide-dependent relaxation in mesenteric resistance arteries. Reactive oxygen species reduction restored relaxation in ZDF rats but not in LZ or ALT-711-treated rats. AGEs were reduced in ALT-711-treated ZDF rats compared with ZDF rats. Metalloproteinase activity, necessary for HF-dependent remodeling, was reduced in ZDF rats compared with LZ rats and restored by ALT-711. Thus, targeting AGE cross-links may provide a therapeutic potential for overcoming microvascular complications in ischemic disorders occurring in diabetes.
__________________
ADMIN/OWNER@Peak-Muscle
liftsiron is online now   Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -5. The time now is 12:01 PM.


Powered by: vBulletin Version 3.8.11
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.