Peak-Muscle.com  

Welcome to the Peak-Muscle.com forums.

You are currently viewing our boards as a guest which gives you limited access to view most discussions and access our other features. Come join us in on one of the best online fitness communities. We have 16,000 members that are likeminded towards a fitness, bodybuilding lifestyle. Registration is free and only takes but a few minutes. By joining our free community you will have access to communicate privately with other members (PM), respond to polls, upload content and access many other special features. You will be able to create threads to discuss and or create a fitness regimen. Or just bounce ideas off of some very knowledgeable members. So don't miss out. Registration is fast, simple and absolutely free so please, join our community today!

Register FAQ Members List Calendar Arcade Mark Forums Read
Go Back   Peak-Muscle.com > Anabolic Steroid Discussion > Peptides and SARMS
User Name
Password

Reply
 
Thread Tools Display Modes
Old 02-24-2021, 01:11 PM   #1
liftsiron
Administrator
 
liftsiron's Avatar
 

Join Date: Nov 2003
Location: Cimmeria
Posts: 18,387
liftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant futureliftsiron has a brilliant future
SR9009 may help battle small cell lung cancer

Theranostics 2020; 10(10):4466-4480. doi:10.7150/thno.42478

Research Paper
SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy

Weitao Shen1#, Wei Zhang1#, Weilin Ye1#, Haihong Wang2, Qingxi Zhang3, Jie Shen1, Qingsha Hong4, Xiang Li5, Ge Wen6, Ting Wei1 Corresponding address, Jian Zhang1 Corresponding address

1. Department of Oncology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
2. Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China.
3. The Second School of Clinical Medicine, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China.
4. Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
5. Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
6. Department of Research, Bioillus technology Co.Ltd, Guangzhou 510631, Guangdong, People's Republic of China.
#These authors contributed equally to this work.
This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Shen W, Zhang W, Ye W, Wang H, Zhang Q, Shen J, Hong Q, Li X, Wen G, Wei T, Zhang J. SR9009 induces a REV-ERB dependent anti-small-cell lung cancer effect through inhibition of autophagy. Theranostics 2020; 10(10):4466-4480. doi:10.7150/thno.42478. Available from https://www.thno.org/v10p4466.htm


Abstract

Rationale: The circadian clock coordinates cell proliferation and metabolism and impacts the progression of some diseases, particularly cancer. Pharmacological modulation of the circadian machinery may be an effective therapeutic approach for treating cancer. SR9009 is a specific synthetic agonist of the REV-ERBs, essential circadian clock components. However, the potential efficacy and antitumor mechanism of this drug in small-cell lung cancer (SCLC) remains poorly understood.

Methods: Here, we used chemosensitive cells (H69 and H446) and the corresponding chemoresistant cells (H69AR and H446DDP) to assess the efficacy of the REV-ERB agonist SR9009 for the treatment of SCLC in vitro and further validated the antitumor effect in subcutaneous tumor models of SCLC. Then, we determined whether REV-ERBα was correlated with the anti-SCLC effect of SR9009. Chromatin immunoprecipitation (ChIP) sequencing assays were conducted to identify potential DNA sequences directly regulated by REV-ERBα. Autophagy regulation by REV-ERBα and its possible mechanism in SR9009-based SCLC therapy were analyzed.

Results: Here, we showed that the REV-ERB agonist SR9009 is specifically lethal to both chemosensitive and chemoresistant SCLC cells. REV-ERBα was involved in the antitumor effect of SR9009 in SCLC. The core autophagy gene Atg5 was identified as a direct downstream target of REV-ERBα and was suppressed by the REV-ERB agonist SR9009 in SCLC. Furthermore, the interaction of REV-ERBα with this autophagy gene impaired autophagy activity, leading to SR9009 cytotoxicity in SCLC cells.

Principal conclusions: Our study provided a novel viewpoint indicating that the REV-ERB agonist SR9009 could be a novel and promising therapeutic strategy in first- or second-line SCLC treatment. The anti-SCLC effect of SR9009 is mediated by REV-ERB dependent suppression of autophagy via direct repression of the autophagy gene Atg5.

Keywords: small cell lung cancer, circadian clock component, SR9009, REV-ERB, autophagy
__________________
ADMIN/OWNER@Peak-Muscle
liftsiron is offline   Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off

Forum Jump


All times are GMT -5. The time now is 09:13 PM.


Powered by: vBulletin Version 3.8.11
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.